
Master en Machine Learning, Inteligencia Artificial y Big Data
Entidad:
SOLICITAR INFORMACIÓN
- Manejar, programar y parametrizar herramientas avanzadas de machine learning para la creación de software inteligente.
- Crear y administrar sistemas expertos.
- Crear y desarrollar chatbots gracias al procesamiento del lenguaje natural (PLN).
- Desarrollar un sistema de Deep Learning.
- Descubrir la visión artificial, el iot y su aplicación para la industria 4.0.
La metodología INESEM Business School, ha sido diseñada para acercar el aula al alumno dentro de la formación online. De esta forma es tan importante trabajar de forma activa en la plataforma, como necesario el trabajo autónomo de este. El alumno cuenta con una completa acción formativa que incluye además del contenido teórico, objetivos, mapas conceptuales, recuerdas, autoevaluaciones, bibliografía, exámenes, actividades prácticas y recursos en forma de documentos descargables, vídeos, material complementario, normativas, páginas web, etc.
A esta actividad en la plataforma hay que añadir el tiempo asociado a la formación dedicado a horas de estudio. Estos son unos completos libros de acceso ininterrumpido a lo largo de la trayectoria profesional de la persona, no solamente durante la formación. Según nuestra experiencia, gran parte del alumnado prefiere trabajar con ellos de manera alterna con la plataforma, si bien la realización de autoevaluaciones de cada unidad didáctica y evaluación de módulo, solamente se encuentra disponible de forma telemática.
El alumno deberá avanzar a lo largo de las unidades didácticas que constituyen el itinerario formativo, así como realizar las actividades y autoevaluaciones correspondientes. Al final del itinerario encontrará un examen final o exámenes. A fecha fin de la acción formativa el alumno deberá haber visitado al menos el 100 % de los contenidos, haber realizado al menos el 75 % de las actividades de autoevaluación, haber realizado al menos el 75 % de los exámenes propuestos y los tiempos de conexión alcanzados deberán sumar en torno al 75 % de las horas de la teleformación de su acción formativa. Dicho progreso se contabilizará a través de la plataforma virtual y puede ser consultado en cualquier momento.
La titulación será remitida al alumno por correo postal una vez se haya comprobado que ha completado el proceso de aprendizaje satisfactoriamente.
Por último, el alumno contará en todo momento con:
- ¿Qué es Big Data?
- La era de las grandes cantidades de información. Historia del big data
- La importancia de almacenar y extraer información
- Big Data enfocado a los negocios
- Open Data
- Información pública
- IoT (Internet of Things-Internet de las cosas)
- Definición y relevancia de la selección de las fuentes de datos
- Naturaleza de las fuentes de datos Big Data
- Definición, Beneficios y Características
- Ejemplo de uso de Open Data
- Introducción a la minería de datos y el aprendizaje automático
- Proceso KDD
- Modelos y Técnicas de Data Mining
- Áreas de aplicación
- Minería de textos y Web Mining
- Data mining y marketing
- Analítica aumentada
- Beneficios y desafíos
- Herramientas y plataformas
- Escalabilidad e integración
- ¿Qué es Hadoop? Relación con Big Data
- Instalación y configuración de insfraestructura y ecosistema Hadoop
- Sistema de archivos HDFS
- MapReduce con Hadoop
- Apache Hive
- Apache Hue
- Apache Spark
- ¿Qué es Weka?
- Técnicas de Data Mining en Weka
- Interfaces de Weka
- Selección de atributos
- ¿Qué es la ciencia de datos?
- Herramientas necesarias para el científico de datos
- Data Science & Cloud Compunting
- Aspectos legales en Protección de Datos
- Introducción
- El modelo relacional
- Lenguaje de consulta SQL
- MySQL. Una base de datos relacional
- ¿Qué es una base de datos NoSQL?
- Bases de datos Relaciones Vs Bases de datos NoSQL
- Tipo de Bases de datos NoSQL. Teorema de CAP
- Sistemas de Bases de datos NoSQL
- ¿Qué es MongoDB?
- Funcionamiento y uso de MongoDB
- Primeros pasos con MongoDB. Instalación y shell de comandos
- Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
- Actualización de datos en MongoDB. Sentencias set y update
- Trabajando con índices en MongoDB para optimización de datos
- Consulta de datos en MongoDB
- Introducción a Python
- ¿Qué necesitas?
- Librerías para el análisis de datos en Python
- MongoDB, Hadoop y Python. Dream Team del Big Data
- Introducción a R
- ¿Qué necesitas?
- Tipos de datos
- Estadística Descriptiva y Predictiva con R
- Integración de R en Hadoop
- Obtención y limpieza de los datos (ETL)
- Inferencia estadística
- Modelos de regresión
- Pruebas de hipótesis
- Inteligencia Analítica de negocios
- La teoría de grafos y el análisis de redes sociales
- Presentación de resultados
- ¿Qué es el análisis de datos?
- Análisis de datos con NumPy
- Pandas
- Matplotlib
- Cómo usar loc en Pandas
- Cómo eliminar una columna en Pandas
- Pivot tables en pandas
- El grupo de pandas
- Python Pandas fusionando marcos de datos
- Aprendizaje automático
- Regresión lineal
- Regresión logística
- Estructura de árbol
- Algortimo de Naive bayes
- Tipos de Naive Bayes
- Máquinas de vectores soporte (Support Vector Machine-SVM)
- ¿Cómo funciona SVM?
- Núcleos SVM
- Construcción de clasificador en Scikit-learn
- K-nearest Neighbors (KNN)
- Implementación de Python del algoritmo KNN
- Análisis de componentes principales
- Algorimto de Random Forest
- ¿Qué es la visualización de datos?
- Importancia y herramientas de la visualización de datos
- Visualización de datos: Principios básicos
- Introducción a Power BI
- Instalación de Power BI
- Modelado de datos
- Visualización de datos
- Dashboards
- Uso compartido de datos
- ¿Qué es Tableau? Usos y aplicaciones
- Tableau Server: Arquitectura y Componentes
- Instalación Tableau
- Espacio de trabajo y navegación
- Conexiones de datos en Tableau
- Tipos de filtros en Tableau
- Ordenación de datos, grupos, jerarquías y conjuntos
- Tablas y gráficos en Tableau
- Fundamentos D3
- Instalación D3
- Funcionamiento D3
- SVG
- Tipos de datos en D3
- Diagrama de barras con D3
- Diagrama de dispersión con D3
- Looker Studio
- Acceder a Looker Studio
- Informes
- Tipologías de gráficos
- Personalización de informes
- Instalación y arquitectura
- Carga de datos
- Informes
- Transformación y modelo de datos
- Análisis de datos
- Google Charts
- Preparación de datos
- Incluir la librería de Google Charts
- Ejemplo básico de Google Chart
- ¿Qué es ChartBlocks?
- Registro y acceso
- Creación de gráficos
- Personalización de gráficos
- Compartir y descargar el gráfico
- ¿Qué es Infogram?
- Creación de una cuenta en Infogram
- Interfaz de usuario de Infogram
- Creación de infografías
- Publicación y compartición de proyectos
- ¿Qué es Leaflet?
- Configuración inicial
- Creación de un mapa básico
- Marcadores
- Capas
- CartoDB
- Introducción a la inteligencia artificial
- Historia
- La importancia de la IA
- Tipos de inteligencia artificial
- Algoritmos aplicados a la inteligencia artificial
- Relación entre inteligencia artificial y big data
- IA y Big Data combinados
- El papel del Big Data en IA
- Tecnologías de IA que se están utilizando con Big Data
- Sistemas expertos
- Estructura de un sistema experto
- Fases de construcción de un sistema
- Rendimiento y mejoras
- Dominios de aplicación
- Creación de un sistema experto en C#
- Añadir incertidumbre y probabilidades
- Futuro de la inteligencia artificial
- Impacto de la IA en la industria
- El impacto económico y social global de la IA y su futuro
- Introducción
- Clasificación de algoritmos de aprendizaje automático
- Ejemplos de aprendizaje automático
- Diferencias entre el aprendizaje automático y el aprendizaje profundo
- Tipos de algoritmos de aprendizaje automático
- El futuro del aprendizaje automático
- Introducción
- Algoritmos
- Introducción
- Filtrado colaborativo
- Clusterización
- Sistemas de recomendación híbridos
- Clasificadores
- Algoritmos
- Componentes
- Aprendizaje
- Introducción
- El proceso de paso de DSS a IDSS
- Casos de aplicación
- Aprendizaje profundo
- Entorno de Deep Learning con Python
- Aprendizaje automático y profundo
- Redes neuronales
- Redes profundas y redes poco profundas
- Perceptrón de una capa y multicapa
- Ejemplo de perceptrón
- Tipos de redes profundas
- Entrada y salida de datos
- Entrenar una red neuronal
- Gráficos computacionales
- Implementación de una red profunda
- El algoritmo de propagación directa
- Redes neuronales profundas multicapa
- Ética normativa y ética aplicada
- Historia y caracteres de la ética de la inteligencia artificial
- Ética realista y ética ficción
- Inteligencia artificial como objeto y sujeto
- Singularidad tecnológica y futuro de la especie humana
- Machine ethics. Nuevos entes autónomos y estatus moral
- Controversias éticas de la aplicación de la inteligencia artificial
- Bioética e inteligencia artificial
- Democracia e inteligencia artificial
- Gobernanza como sistema de prevención y control de riesgos en la inteligencia artificial
- Papel de la UE en la gobernanza de la inteligencia artificial
- Evaluaciones de impacto social, ético y legal de inteligencia artificial de alto riesgo
- Elaboración de un plan de gobernanza
- Principios de la inteligencia artificial responsable
- Aspectos de diseño éticos para Machine Learning
- Inteligencia artificial explicable (XAI). Hacia la IA responsable
- Imparcialidad de Datos (Fairness). Control del sesgo en los modelos
- Escenarios con modelos de IA de alto riesgo
- Auditabilidad en los sistemas de inteligencia artificial
- Sandbox normativo piloto del futuro reglamentario de IA en España
- Transparencia en modelos de Machine Learning
- Análisis de herramientas software para medir la imparcialidad
- Metodología de la ética en la inteligencia artificial
- Agentes artificiales morales
- Moralidad artificial desde un enfoque funcionalista
- Objeciones acerca de agencias morales artificiales
- Responsabilidad y Derechos de los robots
- Introducción a la filosofía política de la inteligencia artificial
- Empleo e inteligencia artificial
- Relaciones humanas e inteligencia artificial
- Funciones de los Estados e inteligencia artificial
- Educación e inteligencia artificial
- Salud e inteligencia artificial
- Movilidad e inteligencia artificial
- Articulación entre ética y política sobre la inteligencia artificial
- Globalización e inteligencia artificial
- Digitalización al servicio de los Objetivos de Desarrollo Sostenible (ODS)
- Estrategia Europea de transición hacia una economía sostenible
- Cambio climático global
- Mejora de eficiencia en procesos organizativos con IA
- Mejora de eficiencia en prácticas individuales con IA
- Ética ambiental e inteligencia artificial
- Armas autónomas
- Intervenciones militares teledirigidas
- Ética de la guerra
- El metaverso
- Gemelos digitales humanos
- Creación de universos paralelos en 3D
- Sistemas autónomos en el ámbito laboral
- Inteligencia artificial para la mejora de calidad de vida en ciudades. Mejora del impacto medioambiental
- Combinación de smart cities, internet de las cosas y big data
- Inteligencia artificial y cuidado personal y sexual
- Análisis ético de la incorporación de la robótica en la vida humana
- Inteligencia artificial para restaurar funciones físicas y cognitivas deterioradas
- Optimizar las capacidades humanas con inteligencia artificial
- Debate académico sobre transhumanismo y poshumanismo
- ¿Qué es PLN?
- ¿Qué incluye el PLN?
- Ejemplos de uso de PLN
- Futuro del PLN
- PLN en Python con la librería NLTK
- Otras herramientas para PLN
- Principios del análisis sintáctico
- Gramática libre de contexto
- Analizadores sintácticos (Parsers)
- Aspectos introductorios del análisis semántico
- Lenguaje semántico para PLN
- Análisis pragmático
- Aspectos introductorios
- Pasos en la extracción de información
- Ejemplo PLN
- Ejemplo PLN con entrada de texto en inglés
- Aspectos introductorios
- ¿Qué es un chatbot?
- ¿Cómo funciona un chatbot?
- VoiceBots
- Desafios para los Chatbots
- Chatbots y el papel de la Inteligencia Artificial (IA)
- Usos y beneficios de los chatbots
- Diferencia entre bots, chatbots e IA
- Áreas de aplicación de Chatbots
- Desarrollo de un chatbot con ChatterBot y Python
- Desarrollo de un chatbot para Facebook Messenger con Chatfuel
- Aprendizaje Automático
- Tipos de aprendizaje automático
- Algoritmos y modelos de aprendizaje automático
- Métricas de evalución en aprendizaje automático
- Regularización y selección de características en aprendizaje automático
- Redes Neuronales Artificiales (RNA)
- Estructura y arquitectura
- Funciones de activación
- Entrenamiento de las RNA
- Redes Neuronales Convolucionales (CNN) y su aplicación
- Redes Neuronales Recurrentes (RNN) y su aplicación
- Redes Neuronales Adversariales (GAN) y su aplicación
- Fundamentos del Procesamiento del Lenguaje Natural (PLN)
- Representación del lenguaje en PLN
- Extracción de características en PLN
- Modelos de PLN basados en secuencias
- Modelos de PLN para tareas específicas
- Aplicaciones de PLN
- Visión artificial
- Preprocesamiento y transformación de imágenes
- Detección y reconocimiento de objetos
- Segmentación y clasificación de imágenes
- Aplicaciones de visión artificial
- Big Data en Inteligencia Artificial
- Almacenamiento y procesamiento distribuido
- Tecnologías y herramientas para el procesamiento de Big Data
- Extracción de conocimiento a partir de datos masivos
- Aprendizaje automático en Big Data
- Evaluación de modelos y métricas de rendimiento
- Optimización de hiperparámetros
- Regularización y técnicas de prevención de sobreajuste
- Técnicas de reducción de dimensionalidad
- Ajuste y ensamblado de modelos
- Aprendizaje por refuerzo
- Agentes y entornos de aprendizaje por refuerzo
- Métdos de aprendizaje por refuerzo
- Exploración y explotación en aprendizaje por refuerzo
- Aplicaciones de aprendizaje por refuerzo
- Preparación de datos para despliegue de modelos
- Diseño e implementación de servicios de IA
- Monitoreo y evaluación de modelos en producción
- Actualización y mantenimiento de modelos de IA
- Escalabilidad y rendimiento en despliegue de modelos de IA
- Descripción general OpenCV
- Instalación OpenCV para Python en Windows
- Instalación OpenCV para Python en Linux
- Anaconda y OpenCV
- Manejo de archivos
- Leer una imagen con OpenCV
- Mostrar imagen con OpenCV
- Guardar una imagen con OpenCV
- Operaciones aritméticas en imágenes usando OpenCV
- Funciones de dibujo
- Redimensión de imágenes
- Erosión de imágenes
- Desenfoque de imágenes
- Bordeado de imágenes
- Escala de grises en imágenes
- Escalado, rotación, desplazamiento y detección de bordes
- Erosión y dilatación de imágenes
- Umbrales simples
- Umbrales adaptativos
- Umbral de Otsu
- Contornos de imágenes
- Incrustación de imágenes
- Intensidad en imágenes
- Registro de imágenes
- Extracción de primer plano
- Operaciones morfológicas en imágenes
- Pirámide de imágen
- Analizar imágenes usando histogramas
- Ecualización de histogramas
- Template matching
- Detección de campos en documentos usando Template matching
- Espacios de color en OpenCV
- Cambio de espacio de color
- Filtrado de color
- Denoising de imágenes en color
- Visualizar una imagen en diferentes espacios de color
- Detección de líneas
- Detección de círculos
- Detectar esquinas (Método Shi-Tomasi)
- Detectar esquinas (método Harris)
- Encontrar círculos y elipses
- Detección de caras y sonrisas
- Vecino más cercano (K-Nearest Neighbour)
- Agrupamiento de K-medias (K-Means Clustering)

- Estar trabajando para una empresa privada.
- Encontrarse cotizando en el Régimen General de la Seguridad Social
- Que el curso seleccionado esté relacionado con el puesto de trabajo o actividad principal de la empresa.
- Que la empresa autorice la formación programada
- Que la empresa disponga de suficiente crédito formativo para cubrir el coste del curso
