Curso Superior en Data Science (Titulación Universitaria + 8 Créditos ECTS) en formación programada online. Formación Bonificada

Curso Superior en Data Science (Titulación Universitaria + 8 Créditos ECTS)

MATRICULACIÓN

Entidad:

Logo NFC - Nebrija Formacion Continua INESEM
Duración total:
200 h.
Teleformación:
100 h.
Modalidad:
Online
Precio: 360 €
Bonificable hasta el 100%
Créditos
8 ECTS

SOLICITAR INFORMACIÓN

Presentación
DESCRIPCIÓN
La creciente cantidad de datos y el desarrollo del Internet de las Cosas (IoT), hacen cada vez más presentes los conceptos de Data Science y el análisis de los datos en los entornos empresariales, donde el científico de datos tiene un papel fundamental en la explotación de estos datos.Con esta acción formativa podrá ponerse a la vanguardia en el uso de las nuevas tecnologías y algoritmos de análisis que le permitirán desarrollar las habilidades analíticas necesarias para extraer y evaluar los datos de una manera eficaz, permitiéndole un soporte de ayuda en la toma de decisiones estratégicas y optimizando costes.En INESEM podrás trabajar en un Entorno Personal de Aprendizaje donde el alumno es el protagonista, avalado por un amplio grupo de tutores especialistas en el sector.
OBJETIVOS
  • Aprender a explotar los datos y visualizar los resultados mediante técnicas de Data Science y programación estadística con Python y R
  • Conocer los principales algoritmos de análisis estadístico utilizados en entorno de Big Data
  • Adquirir los conocimientos necesarios para el manejo de Bases de datos tanto relacionales como NoSQL
  • Aprender a aplicar las técnicas de Data Mining mediante Weka.
  • Descubrir la creación de cuadros de mandos (Dashboard)
PARA QUÉ TE PREPARA
Con el Curso Superior Data Science aprenderás a explotar los datos masivos haciendo uso de las técnicas estadísticas y lenguajes de programación más usados en un entorno de Big Data. Serás capaz de visualizar resultados y aplicar algoritmos propios de la ciencia de datos mediante Python y R permitiéndote tomar decisiones estratégicas y optimizar los cálculos. Además crearás cuadros de mando (Dashboard)
A QUIÉN VA DIRIGIDO
Este Curso Superior Data Science está dirigido a cualquier persona interesada en el mundo de la ciencia de datos y su aplicación a toda la tecnología que engloba el Big Data, especializándose en el análisis y explotación de los datos, así como a profesionales que deseen seguir formándose en un sector cada vez más demandado.
Metodología

La metodología INESEM Business School, ha sido diseñada para acercar el aula al alumno dentro de la formación online. De esta forma es tan importante trabajar de forma activa en la plataforma, como necesario el trabajo autónomo de este. El alumno cuenta con una completa acción formativa que incluye además del contenido teórico, objetivos, mapas conceptuales, recuerdas, autoevaluaciones, bibliografía, exámenes, actividades prácticas y recursos en forma de documentos descargables, vídeos, material complementario, normativas, páginas web, etc.

A esta actividad en la plataforma hay que añadir el tiempo asociado a la formación dedicado a horas de estudio. Estos son unos completos libros de acceso ininterrumpido a lo largo de la trayectoria profesional de la persona, no solamente durante la formación. Según nuestra experiencia, gran parte del alumnado prefiere trabajar con ellos de manera alterna con la plataforma, si bien la realización de autoevaluaciones de cada unidad didáctica y evaluación de módulo, solamente se encuentra disponible de forma telemática.

El alumno deberá avanzar a lo largo de las unidades didácticas que constituyen el itinerario formativo, así como realizar las actividades y autoevaluaciones correspondientes. Al final del itinerario encontrará un examen final o exámenes. A fecha fin de la acción formativa el alumno deberá haber visitado al menos el 100 % de los contenidos, haber realizado al menos el 75 % de las actividades de autoevaluación, haber realizado al menos el 75 % de los exámenes propuestos y los tiempos de conexión alcanzados deberán sumar en torno al 75 % de las horas de la teleformación de su acción formativa. Dicho progreso se contabilizará a través de la plataforma virtual y puede ser consultado en cualquier momento.

La titulación será remitida al alumno por correo postal una vez se haya comprobado que ha completado el proceso de aprendizaje satisfactoriamente.

Por último, el alumno contará en todo momento con:

Claustro Docente
Ofrecerá un minucioso seguimiento al alumno, resolviendo sus dudas e incluso planteando material adicional para su aprendizaje profesional.
Comunidad
En la que todos los alumos de INESEM podrán debatir y compartir su conocimiento.
Material Adicional
De libre acceso en el que completar el proceso formativo y ampliar los conocimientos de cada área concreta. Podrá encontrarlo en Revista Digital, INESEM y MasterClass INESEM, puntos de encuentro entre profesionales que comparten sus conocimientos.
Temario
SE DESARROLLARÁN LOS SIGUIENTES CONTENIDOS
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL Una base de datos relacional
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB: Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB: Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python Dream Team del Big Data
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. Definición de KPIs
  2. KPI, CSF y metas
  3. Principales KPIS
  4. Ejemplos de KPIS
  5. Supuesto práctico: Cálculo de KPI con Excel
  1. Introducción a los cuadros de mando y dashboard
  2. Estrategias para la creación de un cuadro de mando
  3. Dashboard en Excel o Google Analytics
  1. Aplicaciones gratuitas
  2. Aplicaciones propietarias
Titulación
Titulación de Formación Continua Bonificada expedida por el Instituto Europeo de Estudios Empresariales (INESEM). Titulación Universitaria con 8 créditos ECTS Expedida por la Universidad Antonio de Nebrija como Formación Continua (NFC) (Baremable en bolsas de trabajo y concursos oposición de la Administración Pública).
Requisitos Acceso
Este curso bonificado pertenece al sistema de Formación Programada de INESEM Business School. Se tramita con cargo a un crédito formativo asignado a las empresas privadas españolas para la formación de sus trabajadores sin que les suponga un coste. Para tramitar este curso de formación programada es necesario:
  • Estar trabajando para una empresa privada.
  • Encontrarse cotizando en el Régimen General de la Seguridad Social
  • Que el curso seleccionado esté relacionado con el puesto de trabajo o actividad principal de la empresa.
  • Que la empresa autorice la formación programada
  • Que la empresa disponga de suficiente crédito formativo para cubrir el coste del curso
Curso Superior en Data Science (Titulación Universitaria + 8 Créditos ECTS)
Duración total:
200 h.
Teleformación:
100 h.
Modalidad:
Online
Precio: 360 €
Bonificable hasta el 100%
Créditos
8 ECTS
MATRICULACIÓN
MATRÍCULA ONLINE
Curso Superior en Data Science (Titulación Universitaria + 8 Créditos ECTS)
Información básica sobre Protección de Datos. Haz clic aquí
Responsable INSTITUTO EUROPEO DE ESTUDIOS EMPRESARIALES, S.A. Finalidad Información académica y comercial de nuestros servicios de enseñanza Legitimación Consentimiento del interesado Destinatarios Encargados del tratamiento para cumplir con las finalidades Derechos Acceder, rectificar y suprimir los datos, así como otros derechos, como se explica en la información adicional

Información adicional Pulsa aquí

* Campos obligatorios