Master en Business Analytics - Big Data y Analytics en formación programada online. Formación Bonificada

Master en Business Analytics - Big Data y Analytics

MATRICULACIÓN

Entidad:

INESEM Formación Programada
Duración total:
1500 h.
Teleformación:
450 h.
Modalidad:
Online
Precio: 1695 €
Bonificable hasta el 100%

SOLICITAR INFORMACIÓN

Presentación
DESCRIPCIÓN
El mayor activo de una empresa son sus datos y saber administrarlos y extraer decisiones estratégicas se vuelve clave para el futuro de cualquier empresa.Gracias al Master en Business Analytics – Big Data y Analytics podrás extraer información de valor que permita a cualquier empresa mejorar tecnológicamente. Gestionarás grandes volúmenes de información mediante bases de datos, herramientas de analítica, machine learning, dashboards y algoritmos con Python y R. Además, podrás gestionar las redes sociales de manera profesional y realizar analíticas que mejoren la experiencia de usuario.En INESEM contarás con un equipo de profesionales especializados en la materia. Además, gracias a las prácticas garantizadas, podrás acceder a un mercado laboral en plena expansión.
OBJETIVOS


  • Utilizar las principales herramientas de Business Analytics como PowerBI, Tableau o Qlikview.
  • Saber realizar analíticas predictivas gracias al uso del Data Mining y el Machine Learning.
  • Gestionar la información mediante bases de datos relacionales y no relacionales.
  • Realizar algoritmos de análisis de datos con Python y R.
  • Utilizar la analítica web y su aplicación con Google Analytics para la creación de cuadros de mando.
  • Manejar de manera profesional las principales redes sociales orientando su uso a negocios.
  • Gestionar y mejorar la atención al cliente gracias al uso de redes sociales y CRM.
PARA QUÉ TE PREPARA
Gracias al Master en Business Analytics – Big Data y Analytics podrás extraer información de valor que permita a cualquier empresa mejorar tecnológicamente. Gestionarás grandes volúmenes de información mediante bases de datos, herramientas de analítica, machine learning, dashboards y algoritmos con Python y R. Además, podrás gestionar las redes sociales de manera profesional y realizar analíticas que mejoren la experiencia de usuario.
A QUIÉN VA DIRIGIDO
El Master en Business Analytics – Big Data y Analytics está pensado para profesionales que gestionen información, ya sea estadística, de marketing, o empresarial y deseen mejorar gracias al uso de tecnologías actuales. También se orienta a estudiantes que busquen una formación especializada en el sector profesional más demandado por las empresas actuales.
Metodología

La metodología INESEM Business School, ha sido diseñada para acercar el aula al alumno dentro de la formación online. De esta forma es tan importante trabajar de forma activa en la plataforma, como necesario el trabajo autónomo de este. El alumno cuenta con una completa acción formativa que incluye además del contenido teórico, objetivos, mapas conceptuales, recuerdas, autoevaluaciones, bibliografía, exámenes, actividades prácticas y recursos en forma de documentos descargables, vídeos, material complementario, normativas, páginas web, etc.

A esta actividad en la plataforma hay que añadir el tiempo asociado a la formación dedicado a horas de estudio. Estos son unos completos libros de acceso ininterrumpido a lo largo de la trayectoria profesional de la persona, no solamente durante la formación. Según nuestra experiencia, gran parte del alumnado prefiere trabajar con ellos de manera alterna con la plataforma, si bien la realización de autoevaluaciones de cada unidad didáctica y evaluación de módulo, solamente se encuentra disponible de forma telemática.

El alumno deberá avanzar a lo largo de las unidades didácticas que constituyen el itinerario formativo, así como realizar las actividades y autoevaluaciones correspondientes. Al final del itinerario encontrará un examen final o exámenes. A fecha fin de la acción formativa el alumno deberá haber visitado al menos el 100 % de los contenidos, haber realizado al menos el 75 % de las actividades de autoevaluación, haber realizado al menos el 75 % de los exámenes propuestos y los tiempos de conexión alcanzados deberán sumar en torno al 75 % de las horas de la teleformación de su acción formativa. Dicho progreso se contabilizará a través de la plataforma virtual y puede ser consultado en cualquier momento.

La titulación será remitida al alumno por correo postal una vez se haya comprobado que ha completado el proceso de aprendizaje satisfactoriamente.

Por último, el alumno contará en todo momento con:

Claustro Docente
Ofrecerá un minucioso seguimiento al alumno, resolviendo sus dudas e incluso planteando material adicional para su aprendizaje profesional.
Comunidad
En la que todos los alumos de INESEM podrán debatir y compartir su conocimiento.
Material Adicional
De libre acceso en el que completar el proceso formativo y ampliar los conocimientos de cada área concreta. Podrá encontrarlo en Revista Digital, INESEM y MasterClass INESEM, puntos de encuentro entre profesionales que comparten sus conocimientos.
Temario
SE DESARROLLARÁN LOS SIGUIENTES CONTENIDOS
  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información. Historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data
  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución de Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  1. Aproximación al concepto de DataMart
  2. Bases de datos OLTP
  3. Bases de Datos OLAP
  4. MOLAP, ROLAP & HOLAP
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General. ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. Tipos de herramientas para BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  4. Beneficios de las herramientas de BI
  1. Business Intelligence en Excel
  2. Herramienta PowerBI
  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL. Una base de datos relacional
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL. Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB. Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB. Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. Una aproximación a Pentaho
  2. Soluciones que ofrece Pentaho
  3. MongoDB & Pentaho
  4. Hadoop & Pentaho
  5. Weka & Pentaho
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data
  5. UNIDAD DIDÁCTICA 2. R COMO HERRAMIENTA PARA BIG DATA
  6. Introducción a R
  7. ¿Qué necesitas?
  8. Tipos de datos
  9. Estadística Descriptiva y Predictiva con R
  10. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. Introducción
  2. La Analítica Web. Un reto cultural
  3. ¿Qué puede hacer la analítica web por ti o tu empresa?
  4. Glosario de Analítica Web
  1. La analítica web en la actualidad
  2. Definiendo la analítica web
  3. El salto a la analítica web moderna
  1. Identificar los factores críticos
  2. Otros factores que convienen medir
  3. Las macro y microconversiones
  4. Medir el valor económico
  5. Sitios sin comercio. Valores a medir
  6. Medición de sitios B2B
  1. Introducción
  2. La usabilidad Web
  3. Pruebas Online y a Distancia
  4. Las encuestas
  1. Definición de KPIs
  2. KPI, CSF y metas
  3. Principales KPIS
  4. Ejemplos de KPIS
  5. Supuesto práctico. Cálculo de KPI con Excel
  1. Introducción
  2. Recopilar datos de Inteligencia Competitiva
  3. Análisis del tráfico de sitios web
  4. Búsquedas
  1. Introducción a los cuadros de mando y dashboard
  2. Estrategias para la creación de un cuadro de mando
  3. Dashboard en Excel o Google Analytics
  1. Introducción a la analítica web
  2. Funcionamiento Google Analytics
  3. Instalación y configuración de Google Analytics
  4. Configuración de las vistas mediante filtros
  1. Navegación por Google Analytics
  2. Informes de visión general
  3. informes completos
  4. Compartir informes
  5. Configuración paneles de control y accesos directos
  1. Informes de Audiencia
  2. Informes de Adquisición
  3. Informes de Comportamiento
  1. Campañas personalizadas
  2. Realizar un seguimiento de las campañas con el Creador de URLs
  3. Configuración y medición de objetivos
  4. Cómo medir campañas de Google Ads
  1. Tipos de redes sociales
  2. La importancia actual del social media
  3. Prosumer
  4. Contenido de valor
  5. Marketing viral
  6. La figura del Community Manager
  7. Social Media Plan
  8. Reputación Online
  1. Primero pasos con Facebook
  2. Facebook para empresas
  3. Configuración de la Fanpage
  4. Configuración de mensajes: Facebook Messenger
  5. Tipo de publicaciones
  6. Creación de eventos
  7. Facebook Marketplace
  8. Administración de la página
  9. Facebook Insights
  1. Introducción a Instagram
  2. Instagram para empresas
  3. Creación de contenido
  4. Uso de Hashtags
  5. Instagram Stories
  6. Herramientas creativas
  7. Colaboración con influencers
  8. Principales estadísticas
  1. Introducción a Twitter
  2. Elementos básicos de Twitter
  3. Twitter para empresas
  4. Servicio de atención al cliente a través de Twitter
  5. Contenidos
  6. Uso de Hashtags y Trending Topic
  7. Twitter Analytics
  8. TweetDeck
  9. Audiense
  10. Hootsuite
  11. Bitly
  1. Introducción a LinkedIn
  2. LinkedIn para empresas
  3. Creación de perfil y optimización
  4. Grupos
  5. SEO para LinkedIn
  6. Analítica en LinkedIn
  7. LinkedIn Recruiter
  1. Introducción a Youtube
  2. Vídeo Marketing
  3. Crear una canal de empresa
  4. Optimización del canal
  5. Creación de contenidos
  6. Gestión de comentarios
  7. Youtube Analytics
  8. Youtube vs Vimeo
  9. Keyword Tool
  10. Youtube Trends
  1. Introducción a Facebook Ads
  2. Tipos de Campañas y objetivos publicitarios
  3. Segmentación: públicos
  4. Presupuesto
  5. Formatos de anuncios
  6. Ubicaciones
  7. Administrador de anuncios
  8. Seguimiento y optimización de anuncios
  9. Pixel de Facebook
  1. Introducción a Instagram Ads
  2. Objetivos publicitarios
  3. Tipos de anuncios
  4. Administrador de anuncios
  5. Presupuesto
  6. Instagram Partners
  7. Segmentación
  1. Objetivos publicitarios
  2. Audiencias en Twitter
  3. Tipos de anuncios
  4. Administrador de anuncios
  5. Creación de campañas y optimización
  6. Twitter Cards
  7. Instalación código de seguimiento
  8. Listas de remarketing
  1. Introducción a LinkedIn Ads
  2. Formatos de anuncios
  3. Objetivos publicitarios
  4. Creación de campañas
  5. Segmentación
  6. Presupuesto
  7. Seguimiento y medición de resultados
  1. Ventajas de la publicidad en Youtube
  2. Youtube y Google Adwords
  3. Tipos de anuncios en Youtube
  4. Campaña publicitarias en Youtube con Google Adwords
  5. Creación de anuncios desde Youtube
  1. Introducción
  2. Marketing relacional
  3. Experiencia del usuario
  4. Herramientas de Social CRM
  1. Introducción
  2. Escucha activa
  3. Uso de chatbots en Facebook Messenger
  4. Información de la Fanpage
  5. Gestión de Comentarios
  6. Reseñas o valoraciones
  1. Introducción
  2. Información básica del perfil
  3. Agregar un botón de mensaje
  4. Configurar mensajes de bienvenida
  5. Deep Links
  6. Monitorización
  7. Gestión de comentarios
  8. Gestionar crisis de reputación en Twitter
  1. Introducción
  2. Información básica del perfil
  3. Instagram Direct
  4. Gestión de comentarios
  5. Herramientas de Análisis y monitorización
  1. Definir la estrategia
  2. Cuentas específicas
  3. Identificación del equipo
  4. Definir el tono de la comunicación
  5. Protocolo de resolución de problemas
  6. Manual de Preguntas Frecuentes (FAQ)
  7. Monitorización
  8. Gestión, seguimiento y fidelización
  9. Medición de la gestión de atención al cliente
Titulación
Titulación de Formación Continua Bonificada expedida por el Instituto Europeo de Estudios Empresariales (INESEM). Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales. “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”
Requisitos Acceso
Este curso bonificado pertenece al sistema de Formación Programada de INESEM Business School. Se tramita con cargo a un crédito formativo asignado a las empresas privadas españolas para la formación de sus trabajadores sin que les suponga un coste. Para tramitar este curso de formación programada es necesario:
  • Estar trabajando para una empresa privada.
  • Encontrarse cotizando en el Régimen General de la Seguridad Social
  • Que el curso seleccionado esté relacionado con el puesto de trabajo o actividad principal de la empresa.
  • Que la empresa autorice la formación programada
  • Que la empresa disponga de suficiente crédito formativo para cubrir el coste del curso
Master en Business Analytics - Big Data y Analytics
Duración total:
1500 h.
Teleformación:
450 h.
Modalidad:
Online
Precio: 1695 €
Bonificable hasta el 100%
MATRICULACIÓN
MATRÍCULA ONLINE
Master en Business Analytics - Big Data y Analytics
Información básica sobre Protección de Datos. Haz clic aquí
Responsable INSTITUTO EUROPEO DE ESTUDIOS EMPRESARIALES, S.A. Finalidad Información académica y comercial de nuestros servicios de enseñanza Legitimación Consentimiento del interesado Destinatarios Encargados del tratamiento para cumplir con las finalidades Derechos Acceder, rectificar y suprimir los datos, así como otros derechos, como se explica en la información adicional

Información adicional Pulsa aquí

* Campos obligatorios