
Curso Superior en Big Data, Data Science y Visualización de Datos
Entidad:
SOLICITAR INFORMACIÓN
- Aprender a manejar volúmenes masivos de información ofrecidos por el Big Data.
- Extraer conclusiones relevantes que permitan la toma de decisiones estratégicas gracias a herramientas de Big Data.
- Administrar la información mediante bases de datos tanto relacionales como no relacionales.
- Ser capaz de crear informes y gráficos profesionales con diferentes herramientas de visualización de datos.
- Crear scripts para análisis de información gracias a la programación estadística con Python y R.
La metodología INESEM Business School, ha sido diseñada para acercar el aula al alumno dentro de la formación online. De esta forma es tan importante trabajar de forma activa en la plataforma, como necesario el trabajo autónomo de este. El alumno cuenta con una completa acción formativa que incluye además del contenido teórico, objetivos, mapas conceptuales, recuerdas, autoevaluaciones, bibliografía, exámenes, actividades prácticas y recursos en forma de documentos descargables, vídeos, material complementario, normativas, páginas web, etc.
A esta actividad en la plataforma hay que añadir el tiempo asociado a la formación dedicado a horas de estudio. Estos son unos completos libros de acceso ininterrumpido a lo largo de la trayectoria profesional de la persona, no solamente durante la formación. Según nuestra experiencia, gran parte del alumnado prefiere trabajar con ellos de manera alterna con la plataforma, si bien la realización de autoevaluaciones de cada unidad didáctica y evaluación de módulo, solamente se encuentra disponible de forma telemática.
El alumno deberá avanzar a lo largo de las unidades didácticas que constituyen el itinerario formativo, así como realizar las actividades y autoevaluaciones correspondientes. Al final del itinerario encontrará un examen final o exámenes. A fecha fin de la acción formativa el alumno deberá haber visitado al menos el 100 % de los contenidos, haber realizado al menos el 75 % de las actividades de autoevaluación, haber realizado al menos el 75 % de los exámenes propuestos y los tiempos de conexión alcanzados deberán sumar en torno al 75 % de las horas de la teleformación de su acción formativa. Dicho progreso se contabilizará a través de la plataforma virtual y puede ser consultado en cualquier momento.
La titulación será remitida al alumno por correo postal una vez se haya comprobado que ha completado el proceso de aprendizaje satisfactoriamente.
Por último, el alumno contará en todo momento con:
- ¿Qué es Big Data?
- La era de las grandes cantidades de información. Historia del big data
- La importancia de almacenar y extraer información
- Big Data enfocado a los negocios
- Open Data
- Información pública
- IoT (Internet of Things-Internet de las cosas)
- Definición y relevancia de la selección de las fuentes de datos
- Naturaleza de las fuentes de datos Big Data
- Definición, Beneficios y Características
- Ejemplo de uso de Open Data
- Diagnóstico inicial
- Diseño del proyecto
- Proceso de implementación
- Monitorización y control del proyecto
- Responsable y recursos disponibles
- Calendarización
- Alcance y valoración económica del proyecto
- Apoyo del Big Data en el proceso de toma de decisiones
- Toma de decisiones operativas
- Marketing estratégico y Big Data
- Nuevas tendencias en management
- Concepto de web semántica
- Linked Data Vs Big Data
- Lenguaje de consulta SPARQL
- ¿Qué es una base de datos NoSQL?
- Bases de datos Relaciones Vs Bases de datos NoSQL
- Tipo de Bases de datos NoSQL. Teorema de CAP
- Sistemas de Bases de datos NoSQL
- ¿Qué es MongoDB?
- Funcionamiento y uso de MongoDB
- Primeros pasos con MongoDB. Instalación y shell de comandos
- Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
- Actualización de datos en MongoDB. Sentencias set y update
- Trabajando con índices en MongoDB para optimización de datos
- Consulta de datos en MongoDB
- ¿Qué es Hadoop? Relación con Big Data
- Instalación y configuración de insfraestructura y ecosistema Hadoop
- Sistema de archivos HDFS
- MapReduce con Hadoop
- Apache Hive
- Apache Hue
- Apache Spark
- ¿Qué es Weka?
- Técnicas de Data Mining en Weka
- Interfaces de Weka
- Selección de atributos
- Una aproximación a Pentaho
- Soluciones que ofrece Pentaho
- MongoDB & Pentaho
- Hadoop & Pentaho
- Weka & Pentaho
- Definiendo el concepto de Business Intelligence y sociedad de la información
- Arquitectura de una solución de Business Intelligence
- Business Intelligence en los departamentos de la empresa
- Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
- Sistemas operacionales y Procesos ETL en un sistema de BI
- Ventajas y Factores de Riesgos del Business Intelligence
- Cuadros de Mando Integrales (CMI)
- Sistemas de Soporte a la Decisión (DSS)
- Sistemas de Información Ejecutiva (EIS)
- Introducción a la minería de datos y el aprendizaje automático
- Proceso KDD
- Modelos y Técnicas de Data Mining
- Áreas de aplicación
- Minería de textos y Web Mining
- Data mining y marketing
- Aproximación al concepto de DataMart
- Procesos de extracción, transformación y carga de datos (ETL)
- Data Warehou
- Herramientas de Explotación
- Herramientas para el desarrollo de cubos OLAP
- Visión General. ¿Por qué DataWarehouse?
- Estructura y Construcción
- Fases de implantación
- Características
- Data Warehouse en la nube
- Tipos de herramientas para BI
- Productos comerciales para BI
- Productos Open Source para BI
- Beneficios de las herramientas de BI
- ¿Qué es la visualización de datos?
- Importancia y herramientas de la visualización de datos
- Visualización de datos: Principios básicos
- ¿Qué es Tableau? Usos y aplicaciones
- Tableau Server: Arquitectura y Componentes
- Instalación Tableau
- Espacio de trabajo y navegación
- Conexiones de datos en Tableau
- Tipos de filtros en Tableau
- Ordenación de datos, grupos, jerarquías y conjuntos
- Tablas y gráficos en Tableau
- Fundamentos D3
- Instalación D3
- Funcionamiento D3
- SVG
- Tipos de datos en D3
- Diagrama de barras con D3
- Diagrama de dispersión con D3
- Google Data Studio
- Instalación y arquitectura
- Carga de datos
- Informes
- Transformación y modelo de datos
- Análisis de datos
- Business Intelligence en Excel
- Herramientas Powerbi
- CartoDB
- ¿Qué es la ciencia de datos?
- Herramientas necesarias para el científico de datos
- Data Science & Cloud Compunting
- Aspectos legales en Protección de Datos
- Introducción
- El modelo relacional
- Lenguaje de consulta SQL
- MySQL. Una base de datos relacional
- Introducción a Python
- ¿Qué necesitas?
- Librerías para el análisis de datos en Python
- MongoDB, Hadoop y Python. Dream Team del Big Data
- Introducción a R
- ¿Qué necesitas?
- Tipos de datos
- Estadística Descriptiva y Predictiva con R
- Integración de R en Hadoop
- Obtención y limpieza de los datos (ETL)
- Inferencia estadística
- Modelos de regresión
- Pruebas de hipótesis
- Inteligencia Analítica de negocios
- La teoría de grafos y el análisis de redes sociales
- Presentación de resultados

- Estar trabajando para una empresa privada.
- Encontrarse cotizando en el Régimen General de la Seguridad Social
- Que el curso seleccionado esté relacionado con el puesto de trabajo o actividad principal de la empresa.
- Que la empresa autorice la formación programada
- Que la empresa disponga de suficiente crédito formativo para cubrir el coste del curso
